Собрали бесплатные ресурсы, которые позволят погрузиться в работу с искусственным интеллектом — как для новичков, так и для тех, кто уже работает с ML и хочет углубить знания.
TensorFlow — это бесплатная библиотека с открытым исходным кодом от Google для машинного обучения (ML) и искусственного интеллекта (AI). На этом ресурсе собрано очень много обучающих материалов — и теоретических, и практических.
Начать можно с одного из курсов. Для старта подойдут Основы машинного обучения и Основы разработки на JavaScript, а тех, кто уже разбирается в теме, может заинтересовать Теоретическое и продвинутое машинное обучение. Каждый курс состоит из видеоуроков и книг по теме. Обратите внимание, что хоть у сайта и есть адаптация на русский, все учебные материалы здесь только на английском языке. Кроме того, на сайте вы найдете уроки по линейной алгебре, deep learning и разработке. Некоторые из них включают практические задания.
Еще одна коллекция источников, которая постоянно пополняется. Кроме стандартной базы про Python и Deep Learning здесь также есть материалы по применению ML в узких нишах — например, в обработке естественного языка или в сферах, связанных с искусством.
Очень удобный ресурс, чтобы составить себе полноценный учебный план, охватывающий разные аспекты работы с ML. Например, можно выбрать базовый курс по Python, гайд по Generative AI и мануал по Data Science, а для самопроверки пройти тест от Стэнфорда или Университета Торонто. Легко скомпоновать разные ресурсы, чтобы составить свой путь от новичка до практика.
Здесь собраны редкие туториалы, статьи и проекты, которые часто не замечают крупные агрегаторы. С их помощью можно узнать, например, как обучать модели через Excel или как работать с ИИ-агентами (очень хайповая технология, о которой пока не так много обучающих материалов).
На этом ресурсе есть курс из двух частей — для новичков и для тех, кто уже разбирается в AI. В первой части речь идет о том, как устроены нейросети и машинное обучение, а также как эти технологии применяются в жизни. Специальных знаний по математике и программированию для изучения не нужно.
Вторая часть более углубленная. Она дает представление об алгоритмах, которые лежат в основе ИИ. Для изучения потребуются базовые знания Python.
Хороший курс для тех, кто только начинает погружаться в тему. Простой, без академического снобизма и громоздких терминов.
Лектор Анатолий Карпов знакомит с самыми популярными инструментами ML для бизнеса, но с объяснением технических деталей. Курс помогает структурировать знания и посмотреть на знакомые технологии под другим углом.
Бесплатный курс, предназначенный для людей с некоторым опытом программирования, которые хотят научиться применять Deep Learning и машинное обучение для решения практических задач. Минимум воды, много кода — логичное продолжение после изучения базовых курсов.
Курс состоит из девяти уроков, каждый из них длится около 90 минут. В рамках этих уроков вы научитесь создавать и развертывать модели для компьютерного зрения, обработки естественного языка и рекомендательных систем, а также изучите некоторые популярные библиотеки.
Мы с коллегами составили курс «Выстраиваем работу с ML» в Академии Selectel. В нем собрали полезные материалы для компаний, которые внедряют машинное обучение в рабочие процессы.
В нашем курсе вы найдете материалы по MLOps — дисциплине, направленной на унификацию процессов разработки и развертывания ML-систем. Еще в подборке вы найдете материалы о том, как работать с ML-моделями и платформами обработки данных.
Заберите максимум новогодних подарков с 15 по 23 декабря🎁
Один день — один сюрприз: адвент-календарь со скидками до 100% на IT-инфраструктуру.
Подробнее →
Автор очень доступно объясняет математические модели и методы — например, как работают случайные леса, логистическая регрессия, статистические тесты и другое. Особенно рекомендуем видео о том, что там BAM.
Это действительно большой труд, который стоит вдумчиво читать целиком только посвященным, однако как минимум две главы заслуживают пристального внимания. В первой автор разбирает основные понятия дискретной математики — отображения, отношения, их свойства и другие.
Во второй главе автор вводит различные алгебраические структуры типа группоида, полугруппы, группы, кольца, тела, поля и другого. Текст изложен в строгом стиле, но понятия вводятся последовательно. Впрочем, если стиль изложения покажется чересчур сложным, можно также почитать введение в абстрактную алгебру венгерского математика Эрвина Фрида.
Линейная алгебра — особенно важный раздел математики с точки зрения Data Science и машинного обучения. Как минимум все операции с нейросетями — матричные.
Проблема в том, что сама по себе линейная алгебра имеет высокий порог вхождения. Чтобы вам было проще его преодолеть, рекомендуем к прочтению эту книгу.
В самом начале автор очень доступно объясняет смысл определителя. Вторая глава уже требует понимания идеи алгебраической структуры — в частности, поля. Конечно, книга довольно гладко вводит его определение, что ее только красит. В следующих главах идет обсуждение линейной зависимости, комбинации, базиса, размерности и других тем.
Еще одна крутая и необычная книга по математическому анализу. Первая глава подробно рассказывает о возникновении задач, в которых появляется необходимость работать с чем-то, похожим на интегрирование (метод исчерпывания), с чем-то, что так или иначе затрагивает бесконечность.
Вторая глава начинается с отличной цитаты: «История математики обладает одним неисправимым недостатком: хронологический порядок событий не соответствует порядку логическому, естественному». Верное замечание.
Эта глава в целом рассказывает о том, что отцам-основателем матана не чужды шалости в стиле «когда надо — h равно 0, а когда не надо — не равно». И что путь формирования того строгого аппарата, который поставлен на вооружение математического анализа, далеко не всегда был таким.
Автор обсуждает с читателем парадоксы, доказательства, а также тот факт, что не все в этой жизни можно определить. Поэтому книга «Матанализ с человеческим лицом» далеко не только про «матан».
Источник

