Abstract and 1 Introduction
Related Work
2.1. Multimodal Learning
2.2. Multiple Instance Learning
Methodology
3.1. Preliminaries and Notations
3.2. Relations between Attention-based VPG and MIL
3.3. MIVPG for Multiple Visual Inputs
3.4. Unveiling Instance Correlation in MIVPG for Enhanced Multi-instance Scenarios
Experiments and 4.1. General Setup
4.2. Scenario 1: Samples with Single Image
4.3. Scenario 2: Samples with Multiple Images, with Each Image as a General Embedding
4.4. Scenario 3: Samples with Multiple Images, with Each Image Having Multiple Patches to be Considered and 4.5. Case Study
Conclusion and References
\ Supplementary Material
A. Detailed Architecture of QFormer
B. Proof of Proposition
C. More Experiments
\ 
\ 
\ 
\
:::info Authors:
(1) Wenliang Zhong, The University of Texas at Arlington ([email protected]);
(2) Wenyi Wu, Amazon ([email protected]);
(3) Qi Li, Amazon ([email protected]);
(4) Rob Barton, Amazon ([email protected]);
(5) Boxin Du, Amazon ([email protected]);
(6) Shioulin Sam, Amazon ([email protected]);
(7) Karim Bouyarmane, Amazon ([email protected]);
(8) Ismail Tutar, Amazon ([email protected]);
(9) Junzhou Huang, The University of Texas at Arlington ([email protected]).
:::
:::info This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.
:::
\

