The post Solana Handles 100K Transactions Per Second in Test Run: Here’s Why It Matters appeared on BitcoinEthereumNews.com. In brief A Solana validator processed blocks with greater than 100,000 transactions per second in an experiment. The performance improvement was more than 25x the typical throughput of the Solana mainnet. Key Solana backers suggest that it means the network is ready for much more. The Solana network briefly processed more than 100,000 transactions per second (TPS) in an on-chain experiment Sunday. That’s more than 25 times the network’s typical throughput, according to data gathered by the network’s explorer. Solana already massively outpaces O.G. blockchain networks like Bitcoin and Ethereum on that front, but the Sunday peak beats Visa’s own high mark of handling up to 65,000 transactions per second. The Solana validator operator behind the feat said that it showcases what’s possible if continued technical developments and efficiency improvements make their way to the popular layer-1 blockchain. “The main point I want to get across is that Solana needs more efficient programs and an efficient token standard,” pseudonymous validator Dr. Cavey PHD told Decrypt.  The rest of the network struggled very little to replay these blocks, and the subsequent leader produced their blocks normally. This is a significant milestone not only for the network of over 1000 validators, but for distributed systems. — dr cavey phd ⏳ (@cavemanloverboy) August 17, 2025 Cavey’s validator achieved a peak of 104,529 TPS on Sunday in what they called an experiment conducted on a “whim.”  However, unlike a typical Solana block filled with transactions like token swaps or meme coin launches, the experimental blocks instead were filled with “votes, a few normal transactions, and a significant number of ‘no-op’ transactions,” or those that don’t require much computation.  Nevertheless, if extrapolated out and handled with more efficient programs and token standards, Cavey believes the network could process approximately 100,000 token transfers per second—or 10,000-20,000… The post Solana Handles 100K Transactions Per Second in Test Run: Here’s Why It Matters appeared on BitcoinEthereumNews.com. In brief A Solana validator processed blocks with greater than 100,000 transactions per second in an experiment. The performance improvement was more than 25x the typical throughput of the Solana mainnet. Key Solana backers suggest that it means the network is ready for much more. The Solana network briefly processed more than 100,000 transactions per second (TPS) in an on-chain experiment Sunday. That’s more than 25 times the network’s typical throughput, according to data gathered by the network’s explorer. Solana already massively outpaces O.G. blockchain networks like Bitcoin and Ethereum on that front, but the Sunday peak beats Visa’s own high mark of handling up to 65,000 transactions per second. The Solana validator operator behind the feat said that it showcases what’s possible if continued technical developments and efficiency improvements make their way to the popular layer-1 blockchain. “The main point I want to get across is that Solana needs more efficient programs and an efficient token standard,” pseudonymous validator Dr. Cavey PHD told Decrypt.  The rest of the network struggled very little to replay these blocks, and the subsequent leader produced their blocks normally. This is a significant milestone not only for the network of over 1000 validators, but for distributed systems. — dr cavey phd ⏳ (@cavemanloverboy) August 17, 2025 Cavey’s validator achieved a peak of 104,529 TPS on Sunday in what they called an experiment conducted on a “whim.”  However, unlike a typical Solana block filled with transactions like token swaps or meme coin launches, the experimental blocks instead were filled with “votes, a few normal transactions, and a significant number of ‘no-op’ transactions,” or those that don’t require much computation.  Nevertheless, if extrapolated out and handled with more efficient programs and token standards, Cavey believes the network could process approximately 100,000 token transfers per second—or 10,000-20,000…

Solana Handles 100K Transactions Per Second in Test Run: Here’s Why It Matters

3 min read

In brief

  • A Solana validator processed blocks with greater than 100,000 transactions per second in an experiment.
  • The performance improvement was more than 25x the typical throughput of the Solana mainnet.
  • Key Solana backers suggest that it means the network is ready for much more.

The Solana network briefly processed more than 100,000 transactions per second (TPS) in an on-chain experiment Sunday. That’s more than 25 times the network’s typical throughput, according to data gathered by the network’s explorer.

Solana already massively outpaces O.G. blockchain networks like Bitcoin and Ethereum on that front, but the Sunday peak beats Visa’s own high mark of handling up to 65,000 transactions per second.

The Solana validator operator behind the feat said that it showcases what’s possible if continued technical developments and efficiency improvements make their way to the popular layer-1 blockchain.

“The main point I want to get across is that Solana needs more efficient programs and an efficient token standard,” pseudonymous validator Dr. Cavey PHD told Decrypt. 

Cavey’s validator achieved a peak of 104,529 TPS on Sunday in what they called an experiment conducted on a “whim.” 

However, unlike a typical Solana block filled with transactions like token swaps or meme coin launches, the experimental blocks instead were filled with “votes, a few normal transactions, and a significant number of ‘no-op’ transactions,” or those that don’t require much computation. 

Nevertheless, if extrapolated out and handled with more efficient programs and token standards, Cavey believes the network could process approximately 100,000 token transfers per second—or 10,000-20,000 swaps in its current state. 

With such programs and token standards in place, they said, Solana can become the foundational infrastructure for on-chain markets that it aims to be. 

“High capacity enables the world’s markets to all be on-chain,” said Cavey. “Without the capacity, we can only ever hope to support a handful.” 

Solana’s real-time throughput is around 3,600 TPS at present time, according to the block explorer on Solana.com. For comparison, competing network Ethereum’s real-time mark is around 20.7 TPS, according to data from Etherscan—around 170 times slower than Solana. 

Why is it so important that Solana can achieve 100,000 TPS?

“It’s important insofar as it demonstrates that the network can clearly scale over an order of magnitude more than the current utilization, which is already several orders of magnitude over most blockchains,” Multicoin Capital Managing Partner Kyle Samani told Decrypt. “It means that Solana is ready to support web-scale applications today.” 

“This enables more activity to come on-chain,” Mert Mumtax, CEO of Solana infrastructure firm Helius Labs, told Decrypt. “More finance, more oracle updates, more market-making, etc. And of course: lower fees for users.”

Developers too stand to gain, according to Samani, who added that major throughput gains “opens up an entirely new design space for transaction-heavy applications.”

In July, a blog post authored by leading Solana stakeholders (including Samani) outlined a technical roadmap designed to make Solana the home of the world’s best financial markets, with improvements scheduled regularly for the next few years. 

But according to Cavey, major throughput improvements like those showcased in their experiment could be here even sooner.

“Three months at best,” the validator said, “six months at worst.” 

Daily Debrief Newsletter

Start every day with the top news stories right now, plus original features, a podcast, videos and more.

Source: https://decrypt.co/335705/solana-handles-100k-transactions-per-second-test-run

Market Opportunity
Gravity Logo
Gravity Price(G)
$0.003767
$0.003767$0.003767
-2.07%
USD
Gravity (G) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

The Role of Blockchain in Building Safer Web3 Gaming Ecosystems

The Role of Blockchain in Building Safer Web3 Gaming Ecosystems

The gaming industry is in the midst of a historic shift, driven by the rise of Web3. Unlike traditional games, where developers and publishers control assets and dictate in-game economies, Web3 gaming empowers players with ownership and influence. Built on blockchain technology, these ecosystems are decentralized by design, enabling true digital asset ownership, transparent economies, and a future where players help shape the games they play. However, as Web3 gaming grows, security becomes a focal point. The range of security concerns, from hacking to asset theft to vulnerabilities in smart contracts, is a significant issue that will undermine or erode trust in this ecosystem, limiting or stopping adoption. Blockchain technology could be used to create security processes around secure, transparent, and fair Web3 gaming ecosystems. We will explore how security is increasing within gaming ecosystems, which challenges are being overcome, and what the future of security looks like. Why is Security Important in Web3 Gaming? Web3 gaming differs from traditional gaming in that players engage with both the game and assets with real value attached. Players own in-game assets that exist as tokens or NFTs (Non-Fungible Tokens), and can trade and sell them. These game assets usually represent significant financial value, meaning security failure could represent real monetary loss. In essence, without security, the promises of owning “something” in Web3, decentralized economies within games, and all that comes with the term “fair” gameplay can easily be eroded by fraud, hacking, and exploitation. This is precisely why the uniqueness of blockchain should be emphasized in securing Web3 gaming. How Blockchain Ensures Security in Web3 Gaming?
  1. Immutable Ownership of Assets Blockchain records can be manipulated by anyone. If a player owns a sword, skin, or plot of land as an NFT, it is verifiably in their ownership, and it cannot be altered or deleted by the developer or even hacked. This has created a proven track record of ownership, providing control back to the players, unlike any centralised gaming platform where assets can be revoked.
  2. Decentralized Infrastructure Blockchain networks also have a distributed architecture where game data is stored in a worldwide network of nodes, making them much less susceptible to centralised points of failure and attacks. This decentralised approach makes it exponentially more difficult to hijack systems or even shut off the game’s economy.
  3. Secure Transactions with Cryptography Whether a player buys an NFT or trades their in-game tokens for other items or tokens, the transactions are enforced by cryptographic algorithms, ensuring secure, verifiable, and irreversible transactions and eliminating the risks of double-spending or fraudulent trades.
  4. Smart Contract Automation Smart contracts automate the enforcement of game rules and players’ economic exchanges for the developer, eliminating the need for intermediaries or middlemen, and trust for the developer. For example, if a player completes a quest that promises a reward, the smart contract will execute and distribute what was promised.
  5. Anti-Cheating and Fair Gameplay The naturally transparent nature of blockchain makes it extremely simple for anyone to examine a specific instance of gameplay and verify the economic outcomes from that play. Furthermore, multi-player games that enforce smart contracts on things like loot sharing or win sharing can automate and measure trustlessness and avoid cheating, manipulations, and fraud by developers.
  6. Cross-Platform Security Many Web3 games feature asset interoperability across platforms. This interoperability is made viable by blockchain, which guarantees ownership is maintained whenever assets transition from one game or marketplace to another, thereby offering protection to players who rely on transfers for security against fraud. Key Security Dangers in Web3 Gaming Although blockchain provides sound first principles of security, the Web3 gaming ecosystem is susceptible to threats. Some of the most serious threats include:
Smart Contract Vulnerabilities: Smart contracts that are poorly written or lack auditing will leave openings for exploitation and thereby result in asset loss. Phishing Attacks: Unintentionally exposing or revealing private keys or signing transactions that are not possible to reverse, under the assumption they were genuine transaction requests. Bridge Hacks: Cross-chain bridges, which allow players to move their assets between their respective blockchains, continually face hacks, requiring vigilance from players and developers. Scams and Rug Pulls: Rug pulls occur when a game project raises money and leaves, leaving player assets worthless. Regulatory Ambiguity: Global regulations remain unclear; risks exist for players and developers alike. While blockchain alone won’t resolve every issue, it remediates the responsibility of the first principles, more so when joined by processes such as auditing, education, and the right governance, which can improve their contribution to the security landscapes in game ecosystems. Real Life Examples of Blockchain Security in Web3 Gaming Axie Infinity (Ronin Hack): The Axie Infinity game and several projects suffered one of the biggest hacks thus far on its Ronin bridge; however, it demonstrated the effectiveness of multi-sig security and the effective utilization of decentralization. The industry benefited through learning and reflection, thus, as projects have implemented changes to reduce the risks of future hacks or misappropriation. Immutable X: This Ethereum scaling solution aims to ensure secure NFT transactions for gaming, allowing players to trade an asset without the burden of exorbitant fees and fears of being a victim of fraud. Enjin: Enjin is providing a trusted infrastructure for Web3 games, offering secure NFT creation and transfer while reiterating that ownership and an asset securely belong to the player. These examples indubitably illustrate that despite challenges to overcome, blockchain remains the foundational layer on which to build more secure Web3 gaming environments. Benefits of Blockchain Security for Players and Developers For Players: Confidence in true ownership of assets Transparency in in-game economies Protection against nefarious trades/scams For Developers: More trust between players and the platform Less reliance on centralized infrastructure Ability to attract wealth and players based on provable fairness By incorporating blockchain security within the mechanics of game design, developers can create and enforce resilient ecosystems where players feel reassured in investing time, money, and ownership within virtual worlds. The Future of Secure Web3 Gaming Ecosystems As the wisdom of blockchain technology and industry knowledge improves, the future for secure Web3 gaming looks bright. New growing trends include: Zero-Knowledge Proofs (ZKPs): A new wave of protocols that enable private transactions and secure smart contracts while managing user privacy with an element of transparency. Decentralized Identity Solutions (DID): Helping players control their identities and decrease account theft risks. AI-Enhanced Security: Identifying irregularities in user interactions by sampling pattern anomalies to avert hacks and fraud by time-stamping critical events. Interoperable Security Standards: Allowing secured and seamless asset transfers across blockchains and games. With these innovations, blockchain will not only secure gaming assets but also enhance the overall trust and longevity of Web3 gaming ecosystems. Conclusion Blockchain is more than a buzzword in Web3; it is the only way to host security, fairness, and transparency. With blockchain, players confirm immutable ownership of digital assets, there is a decentralized infrastructure, and finally, it supports smart contracts to automate code that protects players and developers from the challenges of digital economies. The threats, vulnerabilities, and scams that come from smart contracts still persist, but the industry is maturing with better security practices, cross-chain solutions, and increased formal cryptographic tools. In the coming years, blockchain will remain the base to digital economies and drive Web3 gaming environments that allow players to safely own, trade, and enjoy their digital experiences free from fraud and exploitation. While blockchain and gaming alone entertain, we will usher in an era of secure digital worlds where trust complements innovation. The Role of Blockchain in Building Safer Web3 Gaming Ecosystems was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40
Vitalik Buterin Challenges Ethereum’s Layer 2 Paradigm

Vitalik Buterin Challenges Ethereum’s Layer 2 Paradigm

Vitalik Buterin challenges the role of layer 2 solutions in Ethereum's ecosystem. Layer 2's slow progress and Ethereum’s L1 scaling impact future strategies.
Share
Coinstats2026/02/04 04:08
USAA Names Dan Griffiths Chief Information Officer to Drive Secure, Simplified Digital Member Experiences

USAA Names Dan Griffiths Chief Information Officer to Drive Secure, Simplified Digital Member Experiences

SAN ANTONIO–(BUSINESS WIRE)–USAA today announced the appointment of Dan Griffiths as Chief Information Officer, effective February 5, 2026. A proven financial‑services
Share
AI Journal2026/02/04 04:15